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Figure 1. Schematic diagram for CEP learning with a newly added hidden unit (1141).Blank circles and squares
respectively are the weight components that are to be obtained by iterative learning and calculations. Filled circles
and squares similarly are the respective weights already obtained by iterative learning and calculations.
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Other notations are defined as follows: Whodenotesthe weight vector between newly added hidden unit »+/ and
the output O;VV,h is the weight vector between input units (original inputand previous hidden units) and a

newly added hidden usif =" - 07 (1) denotes the error for an output index o and training pattern p

between target ¢ and the actual output o(n) with n hidden units in thenetwork;./"f(n) denotes the derivative of
the output transfer function with respect to its input for an output index o and the training pattern p; ﬁ”(n—k 1)

denotes the transfer function of hidden unitn 1 for a training pattern p; and X*  denotes the input vector with
number of patterns p.
The energy function is defined as:
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The dlfference of energy between the network with n hidden units and that with »+ 1 hiddenunits is obtained as:
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where w,mf,,p (n+ 1) is small. This assumption is needed for nonlinear transformation function only. One can

derive the maximum energy reduction of the circuit from » hidden units to #17 hidden units with respect to W,
as:
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et us define the vector:
—__2‘ f {IU - 0

F+=|......

We can, therefore, rewrite equation (1) using matrix notation as follows:
) S ~7 7
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From (1) and (2), the energy reduction is dependent on a correlation between I"and F, (n 4- 1) The idea now is to
modify F,‘(n + 1) by training to obtain as good a match with T"as possible before the next hidden unit is added.

To obtain this match, any of the techniques, e.g. perception learning with gradient descent, maximum correlation,
covariance with gradient ascenf nnnigate_eradient, or Newton's second order method may be used, Unlike cascade
correlation (CC) technique's, however, only the weights Wi, are to be learnedhere. That done, f, is known, and
hence wy, can be calculated from Eqn.(1). Therefore, the learning network petrformance really depends on the
learning technique chosen for matching the error surfaces I' and £, (n-+1) . If we let /' 7 (n) = 1; then Eqn.(2)
can be rewritten as:
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~'bus, equation (3)is a special case of the general formulation of FEqn. (2), When one maximizes AE in Eqn. (3),
then one obtains the ('C learning algorithm,

Y Cascade Frror Projection Learnipe Algorithm and Simulation

a) Learning approach:
From Eqn. (2), a new energy function is defined as:
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‘I'ne weight updates betwecn the inputs (including the weights by expanded inputs) and the newly added hidden unit
arc calculated as follows:
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stepsize(n+1) o< E(n)
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S-bit parity

0-bit parity

7-bit parity

§-bit parity

Floating-point No=1.0- Mo= 1.0

Weight value o =N/A o = N/A

3-bit Weights No= 1.0; B
o =.0024810 o =.016597

o= 0.4 Te=0.4
o =N/A a =N/A
o= 1.0; Mo 1.0;

a =.008766

« =.004101









